11 research outputs found

    Exoplanets imaging with a Phase-Induced Amplitude Apodization Coronagraph - I. Principle

    Full text link
    Using 2 aspheric mirrors, it is possible to apodize a telescope beam without losing light or angular resolution: the output beam is produced by ``remapping'' the entrance beam to produce the desired light intensity distribution in a new pupil. We present the Phase-Induced Amplitude Apodization Coronagraph (PIAAC) concept, which uses this technique, and we show that it allows efficient direct imaging of extrasolar terrestrial planets with a small-size telescope in space. The suitability of the PIAAC for exoplanet imaging is due to a unique combination of achromaticity, small inner working angle (about 1.5 λ/d\lambda/d), high throughput, high angular resolution and large field of view. 3D geometrical raytracing is used to investigate the off-axis aberrations of PIAAC configurations, and show that a field of view of more than 100 λ/d\lambda/d in radius is available thanks to the correcting optics of the PIAAC. Angular diameter of the star and tip-tilt errors can be compensated for by slightly increasing the size of the occulting mask in the focal plane, with minimal impact on the system performance. Earth-size planets at 10 pc can be detected in less than 30s with a 4m telescope. Wavefront quality requirements are similar to classical techniques.Comment: 35 pages, 16 figures, Accepted for publication in Ap

    Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle

    Get PDF
    The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image in the visible (0.4-0.9 micron) planetary systems of nearby stars simultaneously in 16 spectral bands (resolution R~20). For the ~10 most favorable stars, it will have the sensitivity to discover 2 R_E rocky planets within habitable zones and characterize their surfaces or atmospheres through spectrophotometry. Many more massive planets and debris discs will be imaged and characterized for the first time. With a 1.2m visible telescope, the proposed mission achieves its power by exploiting the most efficient and robust coronagraphic and wavefront control techniques. The Phase-Induced Amplitude Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2 lambda/d with nearly 100% throughput and preserves the telescope angular resolution. An efficient focal plane wavefront sensing scheme accurately measures wavefront aberrations which are fed back to the telescope active primary mirror. Fine wavefront control is also performed independently in each of 4 spectral channels, resulting in a system that is robust to wavefront chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid

    TOPS: a small space telescope using phase induced-amplitude apodization (PIAA) to image rocky and giant exo-planets

    Get PDF
    The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image planetary systems of nearby stars simultaneously in a few wide spectral bands covering the visible light (0.4-0.9 μm). It achieves its power by combining a high accuracy wavefront control system with a highly efficient Phase-Induced Amplitude Apodization (PIAA) coronagraph which provides strong suppression very close to the star (within 2 λ/D). The PIAA coronagraphic technique opens the possibility of imaging Earthlike planets in visible light with a smaller telescope than previously supposed. If sized at 1.2-m, TOPS would image and characterize many Jupiter-sized planets, and discover 2 RE rocky planets within habitable zones of the ≈10 most favorable stars. With a larger 2-m aperture, TOPS would have the sensitivity to reveal Earth-like planets in the habitable zone around ≈20 stars, and to characterize any found with low resolution spectroscopy. Unless the occurrence of Earth-like planets is very low (η⊕ <~ 0.2), a useful fraction of the TPF-C scientific program would be possible with aperture much smaller than the baselined 8 by 3.5m for TPF, with its more conventional coronagraph. An ongoing laboratory experiment has successfully demonstrated high contrast coronagraphic imaging within 2 λ/d with the PIAA coronagraph / focal plane wavefront sensing scheme envisioned for TOPS
    corecore